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Abstract

We give a sufficient condition for a lightlike isotropic submanifoldM, of dimensionn, which
is not totally geodesic in a semi-Riemannian manifold of constant curvaturec and of dimension
n+p(n < p), to admit a reduction of codimension. We show that this condition is a necessary and
sufficient condition on the first transversal space ofM. There are basic and non-trivial differences
from the Riemannian case, as developed by Dajczer et al. [Mathematics Lectures Series, Vol. 13,
1990], due to the degenerate metric onM. This result extends in some sense, the one in [J. Diff.
Geom. 5 (1971) 333; Topology 25 (4) (1986) 541; Mathematics Lectures Series, Vol. 13, 1990] to
lightlike isotropic submanifolds. © 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

A natural generalization of the pioneering work by Gauss in differential geometry was
the study of submanifoldsf : Mn → R

n+p, of arbitrary codimensionp immersed into
Euclidean(n+ p)-spaces. An extensive work has been devoted to these submanifolds and
many results are now referred to as classical ones on their geometrical structure. Mainly
the case in which the induced metrics onM are non-degenerate are examined for instance
in [3,5–7] and references therein.
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In a recent past, the growing importance of lightlike submanifolds in global Lorentzian
geometry and their use in general relativity, motivated the study of degenerated submanifolds
in a semi-Riemannian manifold. Due to the degeneracy of the metric, basic differences occur
between the study of lightlike submanifolds and the classical theory of Riemannian as well
as semi-Riemannian submanifolds [4,9,11].

In a point of view of physics, the idea that the universe we live in can be repre-
sented as a four-dimensional hypersurface embedded in a(4 + d)-dimensional space–
time manifold has attracted the attention of many physicists. The embedding of exact
solutions of Einstein equations into higher dimensional semi-Euclidean space can give
a more adequate picture and a better understanding of their intrinsic geometry.
Higher dimensional semi-Euclidean spaces should provide theoretical framework in which
the fundamental laws of physics may appear to be unified, as in the Kaluza–Klein
scheme, which takes into account the mutual interaction between matter and metric
[9,10].

From the point of view of mathematics, methods and results of submanifolds study in
differential geometry might be revisited with a greater interest to the context of degeneracy.
Sometimes they drastically change from non-degenerate metric case to the degenerate metric
one. As far as we know a few literature is available on the theory of lightlike submanifolds in
semi-Riemannian manifolds. The basic work seems to be the series by Duggal and Bejancu
[4] and also Kupeli [8].

In this paper, generalizing earlier results in [1–3], we give sufficient condition for a
lightlike isotropic submanifold of dimensionn, which is not totally geodesic in a semi-
Riemannian manifold of constant curvaturec and of dimensionn + p(n < p), to admit a
reduction of codimension, i.e. to be immersed into an(n+ q)-dimensional totally geodesic
submanifold of constant curvature, withq < p. Our main results stand as follows.

Theorem 1. Letf : Mn → M̄
n+p
c be an isometric immersion of an isotropic submanifold

(M, g, S(TM⊥)) into a complete and simply connected semi-Riemannian manifold with
constant sectional curvature c(M̄n+p

c , ḡ). Suppose that:

1. The transversal connection∇ t onMn is metric.
2. There exists a screen transversal subbundle P ofS(TM⊥) of constant rankq (q < p),

parallel w.r.t. the connection∇s onS(TM⊥), such that

T1(x) ⊂ P(x) ∀x ∈ M,

whereT1(x) is the first transversal space of f atx ∈ M.

Then the codimension of f can be reduced to q.

The isometric immersionf is said to be 1-regular if the dimension of the transversal
space is constant alongM, and this notion is independent of the metric ofM. In this case,
the substantial codimension [3, p. 54], or the embedding class ofM [9,11] is the lowest
value ofq. We show that the substantial codimension ofMn is equal to the rank of its first
transversal spaceT1(x)when the latter is of constant rankq0 onMn. We have the following
theorem.
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Theorem 2. Let (Mn, g, S(TM⊥)) be an isometric immersion of an isotropic non-totally
geodesic submanifold in̄Mn+p

c (n < p). Then the subbundleT1 is parallel w.r.t. the con-
nection∇s onS(TM⊥).

The paper is organized as followed. In Section 1, we summarize notations and basic
formulas concerning geometric objects on lightlike submanifolds, using notations of [4].
Section 2 gives the set up necessary for the proof of the theorems and Section 3 gives the
proofs. Appendix A shows a motivating example to illustrate the purpose of the paper.

2. Preliminaries and basic facts

2.1. The general set up

The fundamental difference between the theory of lightlike (or degenerate) submani-
folds (Mn, g), and the classical theory of submanifolds of a semi-Riemannian manifold
(M̄n+p, ḡ) comes from the fact that in the first case, the normal vector bundleTM⊥ inter-
sects with the tangent bundleTM in a non-zero subbundle, denoted Rad(TM), so that

Rad(TM) = TM ∩ TM⊥ �= {0}. (1)

Given an integerr > 0, the submanifoldM is said to ber-lightlike if rank(Rad(TM)) = r

everywhere.
An orthogonal complementary vector subbundle of Rad(TM) in TM is a non-degenerate

subbundle ofTM called a screen distribution onM and denotedS(TM). We have the fol-
lowing splitting into an orthogonal direct sum:

TM = S(TM) ⊥ Rad(TM). (2)

From Eq. (1), we can consider a complementary vector subbundleS(TM⊥) of Rad(TM) in
TM⊥. It is also a non-degenerate subbundle with respect to the metricḡ, and we have

TM⊥ = Rad(TM) ⊥ S(TM⊥). (3)

The subbundleS(TM⊥) is a screen transversal vector bundle ofM. The subbundleS(TM)

being non-degenerate, so is(S(TM))⊥ and the following holds:

T M̄|M = S(TM) ⊥ (S(TM))⊥. (4)

Note thatS(TM⊥) is a subbundle of(S(TM))⊥ and, since both are non-degenerate, we have

(S(TM))⊥ = S(TM⊥) ⊥ (S(TM⊥))⊥. (5)

One frequently denotes a lightlike submanifoldM by (M, S(TM), S(TM⊥)) to refer to the
above subbundles.

In fact, Rad(TM) is a subbundle of(S(TM⊥))⊥. Let ltr(TM) denote its complementary
vector bundle in(S(TM⊥))⊥. One has

(S(TM⊥))⊥ = Rad(TM)⊕ ltr(TM).
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The subbundle ltr(TM) is called a lightlike transversal vector bundle ofM. The subbundle
tr(TM) defined by

tr(TM) = ltr(TM) ⊥ S(TM⊥)

is called a transversal vector bundle ofM and plays an important role in the study of the
geometry of lightlike submanifolds. We always have tr(TM) ∩ TM⊥ �= tr(TM). That is
tr(TM) is never orthogonal toTM. From now on, given a vector bundleE, we denoteΓ (E)
the space of smooth sections ofE.

Summarizing the above statements, we have the following decomposition:

T M̄|M = TM ⊕ tr(TM) = S(TM) ⊥ S(TM⊥) ⊥ (Rad(TM)⊕ ltr(TM)), (6)

which gives rise to a local quasi-orthonormal field of frames onM̄ alongM (see [4]) denoted
by (ξi, Ni,Xa,Wα), where

1. {ξi} and{Ni}, i ∈ {1, . . . , r} are lightlike basis ofΓ (Rad(TM)|U ) andΓ (ltr(TM)|U ),
respectively,

2. {Xa}, a ∈ {r + 1, . . . , m} is an orthonormal basis ofΓ (S(TM)|U ),
3. {Wα}, α ∈ {r + 1, . . . , n} an orthonormal basis ofΓ (S(TM⊥)|U ),
relative to a coordinate neighborhoodU ⊂ M.

A lightlike submanifold is said to beisotropicif Rad(TM) = TM. In this case, we deduce
from (2) thatS(TM) = {0}. This requires thatn < p and the formula (6) reduces to

T M̄|M = TM ⊕ tr(TM) = S(TM⊥) ⊥ (Rad(TM)⊕ ltr(TM)). (7)

In the sequel, the lightlike submanifoldM is supposed to be isotropic.

2.2. Induced connections

Let ∇̄ denoted the Levi-Civita connection on̄M and∇ the induced connection onM.
For allX, Y ∈ Γ (TM), andV ∈ Γ (tr(TM)), we deduce from (7) that

∇̄XY = ∇XY + hl(X, Y )+ hs(X, Y ) (8)

and

∇̄XV = −AVX +Dl
XV +Ds

XV, (9)

wherehl andhs areΓ (ltr(TM))-valued, andΓ (S(TM⊥))-valued, respectively. They are
called the lightlike and the screen second fundamental forms ofM, respectively. As usual,
AV denotes the shape operator with respect toV .

The second fundamental form ofM with respect to tr(TM) is defined by

h(X, Y ) = hl(X, Y )+ hs(X, Y ), X, Y ∈ Γ (TM). (10)

LetL andS denote the projection morphism of tr(TM) on ltr(TM) andS(TM⊥), respec-
tively. In (9) we have

Dl
XV = L(∇ t

XV ), Ds
XV = S(∇ t

XV ) ∀X ∈ Γ (TM) ∀V ∈ Γ (tr(TM)),
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where∇ t
X stands for the transversal linear connection onM. The transformationsDl and

Ds do not define linear connections on tr(TM) [4, p. 27], but define two Otsuki connections
on tr(TM) with respect to the vector bundle morphismsL andS.

Since the submanifoldM is isotropic, the lightlike second fundamental formhl vanishes
identically onM [4, p. 157].

Define theC∞(M)-bilinear mappings,Dl andDs by

Dl : Γ (TM)× Γ (S(TM⊥)) → Γ (ltr(TM)), (X,SV) �→ Dl(X,SV) = Dl
X(SV)

and

Ds : Γ (TM)× Γ (ltr(TM)) → Γ (S(TM⊥)), (X,LV) �→ Ds(X,LV) = Ds
X(LV).

Then we have

∇̄XN = −ANX + ∇ l
XN +Ds(X,N), (11)

∇̄XW = −AWX + ∇s
XW +Dl(X,W), (12)

where∇s and∇ l are linear connections onS(TM⊥) and ltr(TM), respectively;X ∈ Γ (TM),
N ∈ Γ (ltr(TM)) andW ∈ Γ (S(TM⊥)).

As shown in [4, p. 166]M is totally geodesic if and only ifDl(·,W) = 0 for all W ∈
Γ (S(TM⊥)).

A direct computation shows that, for allX ∈ Γ (TM), V , V ′ ∈ Γ (tr(TM)) we have

(∇ t
Xḡ)(V , V

′) = −(ḡ(AVX, V
′)+ ḡ(AV ′X,V )), (13)

so that the transversal linear connection∇ t on tr(TM) is not metric in general.
The first transversal space atx ∈ M of the isometric immersionf is defined as the

subspace

T1(x) = span{hs(X, Y ),X, Y ∈ Γ (TxM)}.
For the proof of theorems, we need the following two lemmas.

Lemma 1. If the transversal linear connection∇ t on tr(TM) is metric, thenAW = 0 for
all W ∈ Γ (S(TM⊥)).

Proof. Due to Eq. (13),∇ t is metric, if and only ifAW is Γ (S(TM))-valued for allW ∈
Γ (S(TM⊥)). The lemma follows from the fact thatM being isotropic,S(TM) = {0}. �

Lemma 2. For anyx ∈ M, the first transversal spaceT1(x) has the characterization,

T1(x) = {V = W +N ∈ Γ (tr(TM)),Dl(·,W) = 0}⊥. (14)

Proof. BecauseM is a non-totally geodesic isotropic submanifold ofM̄, Lemma 2 shows
thatT1 is not trivial, that isT1(x) �= {0}, for all x ∈ M.
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Let V = hs(X, Y ),X, Y ∈ Γ (TM), be a generic element ofT1(x) andU ∈ A(x)⊥ with

A(x) := {V = W +N ∈ Γ (tr(TM)),Dl(·,W) = 0}⊥,
then

ḡ(U, V ) = ḡ(hs(X, Y ),W +N) = g(AWX, Y )− ḡ(Y,Dl(X,W)) = 0,

where we use Lemma 1 and the definition ofA(x). Thus,

V ∈ T1(x) ⇔ ḡ(V , U) = 0 ∀U ∈ A(x)⊥ ⇔ V ∈ (A(x)⊥)⊥ = A(x),

soT1(x) = A(x). �

3. Proof of theorems

3.1. Proof of Theorem 1

First of all, note thatP is a∇s-parallel subbundle of constant rankq of the bundleS(TM⊥)
implies that

∇s
XW ∈ P ∀X ∈ Γ (TM) ∀W ∈ Γ (P ).

Then consider as usual the three casesc = 0, c > 0 andc < 0.

3.1.1. Casec = 0
For x0 ∈ M, we prove thatf (M) ⊂ Tx0M ⊕ P(x0). Letµ be a section of the comple-

mentary orthogonal bundle ofP in S(TM⊥), γ : I → M a regular curve onM andµt the
parallel transport ofµ alongγ .

SinceP is parallel inΓ (S(TM⊥)), so is its orthogonal complementaryP⊥ in the sub-
bundleΓ (S(TM⊥)) and

µt = ∇s
γ ′µ ∈ Γ (P⊥

γ (t)) ∀t ∈ I.

Using Weingarten formula, we have

∇̄γ ′µt = −Aµt γ
′ +Dl(γ ′, µt )+ ∇s

γ ′µt .

But

µt ∈ Γ (P⊥
γ (t)) ⊂ Γ (S(TM⊥)) ∀t ∈ I.

Lemma 1 yieldsAγ ′
µt = 0 for all t ∈ I .

Moreover,µt ∈ P⊥
γ (t) ⊂ T1(γ (t)) from assumption of the theorem. So Lemma 2 gives

Dl(γ ′, µt ) = 0 ∀ t ∈ I.

And becauseµt is the parallel transport inP⊥ of µ alongγ , we have∇s
γ ′µt = 0 for all t

in I .
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We deduce that̄∇γ ′µt = 0 for all t ∈ I , so thatµt = µ is a constant vector inRn+p.
Hence

d

dt
ḡ(f (γ (t))− f (x0), µt ) = ḡ(f∗γ ′(t), µ) = 0.

We conclude that

ḡ(f (γ (t))− f (x0), µ) = 0 ∀t ∈ I

and

f (γ (t))− f (x0) ∈ (P⊥
γ (t))

⊥ = Pγ (t) ∀t ∈ I.

Due to the fact thatγ andµ are arbitrary onM, we have

f (M) ⊂ Tx0(M)⊕ P(x0) ∼= Rn+q,

which is a totally geodesic(n+ q)-dimensional subspace ofRn+p.

3.1.2. Casec > 0
The isotropic submanifoldMn is isometrically immersed into a pseudosphereS

n+p
c .

Consider the isometric immersion,

f̃ = i ◦ f : Mn → R
n+p+1,

where the mapi is the natural injection ofSn+p
c intoRn+p+1. Then

tr(T̃xM) = tr(TxM)⊕ 〈f (x)〉
with

〈f (x)〉 ⊂ S(T̃xM
⊥),

where〈f (x)〉 := Span{f (x)}.
We deduce that

T̃1(x) ⊂ T1(x)⊕ 〈f (x)〉 ⊂ P(x)⊕ 〈f (x)〉 = P̃ (x).

And then

T̃1(x) ⊂ S(TxM
⊥)⊕ 〈f (x)〉 = S(T̃M⊥) ∀x ∈ M.

The orthogonal complementary of̃P(x) in S(T̃M⊥) and ofP(x) in S(TM⊥), which is
parallel w.r.t. the transversal screen connection∇s = ∇̃s|S(TM⊥), are equal, and

∇̃s
XW = D̃s

XW = Ds(X,W) ∀W ∈ Γ (T̃ (S(TM⊥))).

Thus

ḡ(∇̃s
Xf̃ (x),W) = ḡ((D̄s

Xf̃ (x),W) = Xḡ(f̃ (x),W)− ḡ(f̃ (x),∇s
XW) = 0
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and therefore

∇̃s
Xf̃ (x) ∈ 〈f (x)〉

and〈f (x)〉 is a transversal vector subbundle who is parallel w.r.t. the connection∇̃s. We
conclude thatP̃ is parallel w.r.t.∇̃s, and as in the casec = 0, we have

f̃ (M) ⊂ T̃x0M ⊕ P̃ (x0) = Tx0(M)⊕ P(x0)⊕ 〈f (x0)〉 ∼= Rn+q+1.

Sof (M) ⊂ S
n+p
c ∩ Rn+q+1 = S

n+q
c which is totally geodesic inSn+p

c . This proves the
casec > 0.

3.1.3. Casec < 0
The general scheme holds as forc > 0. Now f̃ mapsMn into Ln+p+1, the Lorentzian

spaceRn+p+1
1 and we get that

f̃ (M) ⊂ T̃x0M ⊕ P̃ (x0) = Tx0(M)⊕ P(x0)⊕ 〈f (x0)〉,
wheref (x) is spacelike. Then

f̃ (M) ⊂ Ln+q+1

and

f (M) ⊂ Hn+p
c ∩ Ln+q+1 ∼= Hn+q

c

andM admits a reduction of codimension, which completes the proof.

3.2. Proof of Theorem 2

We haveT1(x) ⊂ (S(TM⊥))∀x ∈ M. To prove thatT1 is parallel, we will prove that its
orthogonal complementary inΓ (S(TM⊥)) is parallel. So, ifη ∈ T ⊥

1 , we have to prove that

∇s
Zη ∈ T ⊥

1 ∀Z ∈ Γ (TM),

i.e.

ḡ(hs(X, Y ),∇s
Zη) = 0 ∀X, Y,Z ∈ Γ (TM). (15)

Set

η = N +W, N ∈ Γ (ltr(TM)), W ∈ Γ (S(TM⊥)),

then

ḡ(hs(X, Y ),∇s
Zη) = g(A∇s

Z
η, Y )− ḡ(Y,Dl(X,W)).

But using Lemma 1, we have

∇s
Zη ∈ Γ (S(TM⊥)) ⇒ A∇s

Zη
= 0
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and

η = N +W ∈ T ⊥
1 ⇒ Dl(X,W) = 0.

We deduce that

ḡ(hs(X, Y ),∇s
Zη) = 0 ∀X, Y,Z ∈ Γ (TM)

and then∇s
Zη ∈ T ⊥

1 so thatN⊥
1 is parallel w.r.t. the connection∇s. This proves Theorem 2.

As a consequence of the two theorems, we have the following:

Proposition 1. A necessary and sufficient condition for the isotropic immersionf : Mn →
M̃

n+p
c , n < p to admit a reduction of codimension, is that the isotropic immersion is

1-regular of constant rank q, and the substantial codimension is q.
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Appendix A

These ideas are illustrated through the following example.
SupposeM is a surface ofR5

2, Euclidean spaceR5 with a semi-Euclidean metric̄g =
diag(−1,−1,+1,+1,+1), given by equations,

x1 = 1√
2
(x4 + sinhx5), x2 = 1√

2
(x4 − sinhx5), x3 = coshx5

and set(u = x4, v = x5) a system of coordinate onM. We derive the following:

TM = Span{ξ1, ξ2}
with

ξ1 = ∂

∂u
= 1√

2

∂

∂x1
+ 1√

2

∂

∂x2
+ ∂

∂x4
,

ξ2 = ∂

∂v
= coshx5

√
2

∂

∂x1
− coshx5

√
2

∂

∂x2
+ sinhx5 ∂

∂x3
+ ∂

∂x5

and

TM⊥ = Span

{
U1 = ξ1, U2 = ξ2, U3 = ∂

∂x3
+ 1√

2

∂

∂x4
− sinhx5 ∂

∂x5

}
.

It follows that Rad(TM) = TM ⊂ TM⊥ andM is an isotropic surface ofR5
2.
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The subbundleS(TM⊥) is a complementary vector bundle of Rad(TM) in TM⊥. We take
(there is no unicity),

S(TM⊥) = Span

{
W1 = sinhx5

√
2

∂

∂x1
− sinhx5

√
2

∂

∂x2
+ coshx5 ∂

∂x3

}
.

A.1. Construction ofltr(TM)

A basis{N1, N2) of ltr(TM) on a coordinate neighborhoodU satisfies:

ḡ(Ni, Nj ) = 0 ∀i, j ∈ {1,2}, ḡ(ξ1, N2) = ḡ(ξ2, N1) = 0,

ḡ(N1, ξ1) = ḡ(N2, ξ2) = 1. (A.1)

Using (A.1) we obtain that

ltr(TM) = Span{N1, N2}
with

N1 = 1

2

(
− 1√

2

∂

∂x1
− 1√

2

∂

∂x2
+ ∂

∂x4

)
,

N2 = 1

2

(
−coshx5

√
2

∂

∂x1
+ coshx5

√
2

∂

∂x2
− sinhx5 ∂

∂x3
+ ∂

∂x5

)

and deduce that

tr(TM) = ltr(TM)⊕ Rad(TM) = Span{W1, N1, N2}.
A straightforward calculation gives

∇̄ξ1ξ1 = ∇̄ξ1ξ2 = ∇̄ξ2ξ1 = 0, ∇̄ξ2ξ2 = W1.

We deduce thatM is not totally geodesic inR5
2.

Moreover we have for allX, Y,∈ Γ (TM),X = Xiξi, Y = Y j ξj ,

∇̄XY = ∇XY + hs(X, Y )

= [(X1(ξ1(Y
1))+X2(ξ2(Y

1)))ξ1+(X1(ξ1(Y
2))+X2(ξ2(Y

2)))ξ2]+X2Y 2W1

and

hs(X, Y ) = ḡ(X,N2)ḡ(Y,N2)W1.

So that

hs
1(ξ2, ξ2) = 1. (A.2)

From (A.2) we infer that

T1(x) = Span{hs(X, Y ),X, Y ∈ Γ (TxM)} = S(TxM
⊥),
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which is of constant rankq = 1 for all x ∈ M. From above and proposition,M admits
a reduction of codimension to 1, that is there exists a totally geodesic three-dimensional
submanifold ofR5

2 into whichM can be isometrically immersed.
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